O Sistersinspirit.ca facilita a busca por soluções para todas as suas perguntas com a ajuda de uma comunidade ativa. Encontre respostas confiáveis para suas perguntas de uma comunidade de especialistas prontos para ajudar com seu conhecimento e experiência em diversas áreas. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.
Sagot :
De acordo com o enunciado, temos duas raízes; no entanto, sabemos que se uma das raízes é complexa, então, a equação admitirá outra raiz complexa (conjugada). Logo, a equação terá grau 3, uma vez que o grau é o menor possível.
Temos que P(x) é da forma: [tex]P(x)=ax^3+bx^2+cx+d[/tex].
Fazendo [tex]P(x)=a(x-x_1)(x-x_2)(x-x_3)[/tex], temos:
[tex]P(x)=a(x-x_1)(x-x_2)(x-x_3)\\\\P(x)=a(x-1)(x-i)(x+i)\\\\P(x)=a(x-1)(x^2-i^2)\\\\P(x)=a(x-1)(x^2+1)\\\\P(x)=a(x^3-x^2+x-1)\\\\P(0)=a(0-0+0-1)\\\\-1=-a\\\\\boxed{a=1}[/tex]
Por fim,
[tex]P(x)=a(x^3-x^2+x-1)\\\\P(x)=x^3-x^2+x-1\\\\P(-1)=(-1)^3-(-1)^2+(-1)-1\\\\P(-1)=-1-1-1-1\\\\\boxed{\boxed{P(-1)=-4}}[/tex]
Daí, alternativa a.
Temos que P(x) é da forma: [tex]P(x)=ax^3+bx^2+cx+d[/tex].
Fazendo [tex]P(x)=a(x-x_1)(x-x_2)(x-x_3)[/tex], temos:
[tex]P(x)=a(x-x_1)(x-x_2)(x-x_3)\\\\P(x)=a(x-1)(x-i)(x+i)\\\\P(x)=a(x-1)(x^2-i^2)\\\\P(x)=a(x-1)(x^2+1)\\\\P(x)=a(x^3-x^2+x-1)\\\\P(0)=a(0-0+0-1)\\\\-1=-a\\\\\boxed{a=1}[/tex]
Por fim,
[tex]P(x)=a(x^3-x^2+x-1)\\\\P(x)=x^3-x^2+x-1\\\\P(-1)=(-1)^3-(-1)^2+(-1)-1\\\\P(-1)=-1-1-1-1\\\\\boxed{\boxed{P(-1)=-4}}[/tex]
Daí, alternativa a.
Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas para outras perguntas que possa ter. Obrigado por visitar. Nosso objetivo é fornecer as respostas mais precisas para todas as suas necessidades informativas. Volte em breve. Estamos felizes em responder suas perguntas. Volte ao Sistersinspirit.ca para obter mais respostas.