Bem-vindo ao Sistersinspirit.ca, a melhor plataforma de perguntas e respostas para obter soluções rápidas e precisas para todas as suas dúvidas. Experimente a conveniência de encontrar respostas precisas para suas perguntas de uma comunidade dedicada de especialistas. Explore nossa plataforma de perguntas e respostas para encontrar respostas detalhadas de uma ampla gama de especialistas em diversas áreas.
Sagot :
Para determinarmos a equação de uma reta, temos que ter pelo menos um ponto que passe nela e o coeficiente angular, tudo para que joguemos na equação fundamental, que é:
[tex]\boxed{y-y_{0}=m(x-x_{0})}[/tex]
m = coeficiente angular
y0 = ordenada de um dos pontos
x0 = abscissa de um dos pontos
Lembrando que para extrair a ordenada e abscissa, temos que escolher um único ponto.
Não temos o coeficiente angular, mas podemos calcular utilizando a seguinte relação:
[tex]m = \frac{\Delta y}{\Delta x} = \frac{y_{f}-y_{i}}{x_{f}-x_{i}} = \frac{3-(-2)}{3-(-2)} = \frac{3+2}{3+2} = \frac{5}{5} = \boxed{1}[/tex]
Escolhendo ponto A (você pode testar com B também) e pegando o coeficiente, jogaremos na equação:
[tex]y-y_{0}=m(x-x_{0}) \\\\ y-(-2)=1(x-(-2)) \\\\ y+2=1(x+2) \\\\ y+2=1x+2 \\\\ x-y+2-2 = 0 \\\\ \boxed{\boxed{x-y=0}} \rightarrow equa\c{c}\~{a}o \ geral \ da \ reta[/tex]
[tex]\boxed{y-y_{0}=m(x-x_{0})}[/tex]
m = coeficiente angular
y0 = ordenada de um dos pontos
x0 = abscissa de um dos pontos
Lembrando que para extrair a ordenada e abscissa, temos que escolher um único ponto.
Não temos o coeficiente angular, mas podemos calcular utilizando a seguinte relação:
[tex]m = \frac{\Delta y}{\Delta x} = \frac{y_{f}-y_{i}}{x_{f}-x_{i}} = \frac{3-(-2)}{3-(-2)} = \frac{3+2}{3+2} = \frac{5}{5} = \boxed{1}[/tex]
Escolhendo ponto A (você pode testar com B também) e pegando o coeficiente, jogaremos na equação:
[tex]y-y_{0}=m(x-x_{0}) \\\\ y-(-2)=1(x-(-2)) \\\\ y+2=1(x+2) \\\\ y+2=1x+2 \\\\ x-y+2-2 = 0 \\\\ \boxed{\boxed{x-y=0}} \rightarrow equa\c{c}\~{a}o \ geral \ da \ reta[/tex]
Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Obrigado por confiar no Sistersinspirit.ca. Volte novamente para obter mais informações e respostas.