O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Descubra respostas abrangentes para suas perguntas de profissionais experientes em nossa plataforma amigável. Obtenha soluções rápidas e confiáveis para suas perguntas de profissionais experientes em nossa abrangente plataforma de perguntas e respostas.
Sagot :
Então vinicius, não conheço muito análise combinatória, espero tentar te ajudar.
O conceito que eu utilizei foi o de combinação, pois a ordem dos profissionais na comissão não importa, independe da posição que eles se encontram, porém ele quer exatamente 2 de acada profissão de uma comissão com 4.
então fica assim: Cn,p= n!/p!(n-p)!
C5,2 . C4,2 = 60 ou seja dos cinco professores sempre serão 2, ao mesmo tempo serão 2 dos 4 médicos, quando as situações acontencem simultaneamente, multiplicamos as combinações. vou resolver aqui:
[tex]C5,2= \frac{5!}{2!(5-2)!} =>10 [/tex]
[tex]C4,2= \frac{4!}{2!(4-2)!} => 6[/tex]
C5,2 . C4,2 = 60 maneiras diferentes onde tenha 2 de cada comissão, espero ter ajudado, se não for a resposta ao menos espero ter lhe dado uma idéia ^^
O conceito que eu utilizei foi o de combinação, pois a ordem dos profissionais na comissão não importa, independe da posição que eles se encontram, porém ele quer exatamente 2 de acada profissão de uma comissão com 4.
então fica assim: Cn,p= n!/p!(n-p)!
C5,2 . C4,2 = 60 ou seja dos cinco professores sempre serão 2, ao mesmo tempo serão 2 dos 4 médicos, quando as situações acontencem simultaneamente, multiplicamos as combinações. vou resolver aqui:
[tex]C5,2= \frac{5!}{2!(5-2)!} =>10 [/tex]
[tex]C4,2= \frac{4!}{2!(4-2)!} => 6[/tex]
C5,2 . C4,2 = 60 maneiras diferentes onde tenha 2 de cada comissão, espero ter ajudado, se não for a resposta ao menos espero ter lhe dado uma idéia ^^
Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Sistersinspirit.ca está aqui para suas perguntas. Não se esqueça de voltar para obter novas respostas.