Bem-vindo ao Sistersinspirit.ca, a melhor plataforma de perguntas e respostas para obter soluções rápidas e precisas para todas as suas dúvidas. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas. Junte-se à nossa plataforma de perguntas e respostas para conectar-se com especialistas dedicados a fornecer respostas precisas para suas perguntas em diversas áreas.

(a) Mostre que o conjunto de todos os pontos no plano ax+by+cz = 0e um subespaco do IR3

Sagot :

As regras para validar um subespação são:
I) soma de dois vetores: u + v
II) multiplicação de um vetor por um escalar

Resolvendo o item I:
[tex]u = (ax1, by1, cz1); v = (ax2, by2, cz2) u + v = (ax1, by1, cz1) + (ax2, by2, cz2) u + v = (ax1 + ax2, by1 + by2, cz1 + cz2) u + v = (a(x1 + x2), b(y1 + y2), c(z1 + z2))[/tex]
se observar a primeira componente é identica a solução inicial onde neste caso, x equivale a (x1 + x2). O mesmo ocorre com a segunda e a terceira componente.

II) multiplicar um escalar por um vetor:
[tex] \alpha u = \alpha (ax1, by1, cz1) \alpha u = ( \alpha ax1, \alpha by1, \alpha cz1)[/tex]
olhando as componentes resultantes com a original é possível verificar a igualdade.