Bem-vindo ao Sistersinspirit.ca, onde suas perguntas são respondidas por especialistas e membros experientes da comunidade. Junte-se à nossa plataforma de perguntas e respostas e conecte-se com profissionais prontos para fornecer respostas precisas para suas dúvidas. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.
Sagot :
Resposta: 4.320 maneiras diferentes.
Explicação passo-a-passo:
Para responder essa questão devemos usar do conceito de permutação simples, onde [tex]\mathtt{P_n=n!}[/tex] . A permutação consiste no ordenamento das posições de determinados itens, valores ou pessoas (como nesse caso).
O ponto da chave da questão está em como os clientes podem ser ordenados. Considere "H" como "Homem" e "M" como "Mulher" e veja a seguir as possíveis posições.
MMMHHHHH
HMMMHHHH
HHMMMHHH
HHHMMMHH
HHHHMMMH
HHHHHMMM
A quantidade de posições também pode ser adquirida pela permutação da quantidade de mulheres. [tex]\mathtt{P_3=3!=3\times2\times1=6}[/tex]
As mulheres podem ficar juntas de 6 formas diferentes. Considerando isso, devemos multiplicar por 6 as permutações da quantidade de mulheres e homens. Veja:
[tex]\mathtt{P=6\times(P_H\times P_M)}\\\\ \mathtt{P=6\times(P_5\times P_3)}\\\\ \mathtt{P=6\times(5!\times3!)}\\\\ \mathtt{P=6\times(5\times4\times3\times2\times1\times3\times2\times1)}\\\\ \mathtt{P=6\times(720)}\\\\ \mathtt{P=4.320}[/tex]
As pessoas podem se posicionar de 4.320 maneiras diferentes para que as mulheres fiquem juntas.
Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Obrigado por usar nossa plataforma. Nosso objetivo é fornecer respostas precisas e atualizadas para todas as suas perguntas. Volte em breve. Temos orgulho de fornecer respostas no Sistersinspirit.ca. Visite-nos novamente para obter mais informações.